-
-
Natural Posterior Network
Deep Bayesian Uncertainty for Exponential Family Distributions - ICLR 2022
-
End-to-End Learning of Probabilistic Hierarchies on Graphs
ICLR 2022
-
Differentiable DAG Sampling
ICLR 2022
-
Graph Posterior Network
Bayesian Predictive Uncertainty for Node Classification - NeurIPS 2021
-
Evaluating Robustness of Predictive Uncertainty Estimation
Are Dirichlet-based Models Reliable? - ICML 2021
-
On Out-of-distribution Detection with Energy-Based Models
UDL 2021 (ICML)
-
Posterior Network
Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts - NeurIPS 2020
-
Scikit-network
Graph Analysis in Python - JMLR 2020
-
Uncertainty on Asynchronous Time Event Prediction
ICLR 2022
-
Tree Sampling Divergence
An Information-Theoretic Metric for Hierarchical Graph Clustering - IJCAI 2019
-
Multi-scale Clustering in Graphs using Modularity
KTH Publication Library (DiVA) 2019
-
Hierarchical Graph Clustering using Node Pair Sampling
MLG 2018 (KDD)